Simulation of the energy distribution of relativistic electron precipitation caused by quasi-linear interactions with EMIC waves

نویسندگان

  • Zan Li
  • Robyn M Millan
  • Mary K Hudson
چکیده

[1]Previous studies on electromagnetic ion cyclotron (EMIC) waves as a possible cause of relativistic electron precipitation (REP) mainly focus on the time evolution of the trapped electron flux. However, directly measured by balloons and many satellites is the precipitating flux as well as its dependence on both time and energy. Therefore, to better understand whether pitch angle scattering by EMIC waves is an important radiation belt electron loss mechanism and whether quasi-linear theory is a sufficient theoretical treatment, we simulate the quasi-linear wave-particle interactions for a range of parameters and generate energy spectra, laying the foundation for modeling specific events that can be compared with balloon and spacecraft observations. We show that the REP energy spectrum has a peaked structure, with a lower cutoff at the minimum resonant energy. The peak moves with time toward higher energies and the spectrum flattens. The precipitating flux, on the other hand, first rapidly increases and then gradually decreases. We also show that increasing wave frequency can lead to the occurrence of a second peak. In both single- and double-peak cases, increasing wave frequency, cold plasma density or decreasing background magnetic field strength lowers the energies of the peak(s) and causes the precipitation to increase at low energies and decrease at high energies at the start of the precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Generating Relativistic Electrons in the Earth’s Inner Magnetosphere Based on Gyroresonant Wave-particle Interactions

During the recovery phase of a magnetic storm, fluxes of relativistic (> 1 MeV) electrons in the inner magnetosphere (3 ≤ L ≤ 6) increase to beyond pre-storm levels, reaching a peak about 4 days after the initiation of the storm. In order to account for the generation of these “killer electrons”, a model is presented primarily based on stochastic acceleration of electrons by enhanced whistler-m...

متن کامل

Correspondence between a plasma-based EMIC wave proxy and subauroral proton precipitation

[1] The loss of relativistic electrons from the Earth’s radiation belts as a result of resonant interactions with electromagnetic ion cyclotron waves (EMIC) waves has yet to be fully quantified, in part, due to the lack of global measurements of the wave distribution during individual storm events. Recent work has focused on augmenting direct wave measurements with proxy wave indicators. Here w...

متن کامل

Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES

[1] Electromagnetic ion cyclotron (EMIC) waves which propagate at frequencies below the proton gyrofrequency can undergo cyclotron resonant interactions with relativistic electrons in the outer radiation belt and cause pitch-angle scattering and electron loss to the atmosphere. Typical storm-time wave amplitudes of 1–10 nT cause strong diffusion scattering which may lead to significant relativi...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

Rapid Acceleration of Electrons in the Magnetosphere by Fast-mode Mhd Waves

During major magnetic storms enhanced fluxes of relativistic electrons in the inner magnetosphere have been observed to correlate with ULF waves. The enhancements can take place over a period of several hours. In order to account for such a rapid generation of relativistic electrons, we examine the mechanism of transit-time acceleration of electrons by low-frequency fast-mode MHD waves, here th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2013